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The concept of adding a harbour, consisting of two parallel projections to a 
wave-energy device was first brought to the attention of the wave-energy community 
a t  a Symposium in Trondheim, Norway, in June 1982. The proponents of the idea 
claim that the performance of the device is considerably improved by the addition 
of the harbour, thereby reducing costs. In  this paper two theoretical techniques are 
described for predicting the performance of the harbour system. First, a relatively 
simple approximate method using the theory of long thin harbours is described. 
Secondly, numerical techniques used for rigid-body interaction with waves are 
adapted to cope with harbour systems with no restrictions on dimensions. It is shown 
that the simpler approach gives results that agree closely with numerical calculations 
over a wide range of configurations. Hydrodynamic theory is used to evaluate the 
performance of the device, assuming that it can absorb energy through a resistive 
damper. The results are encouraging, demonstrating that the addition of a harbour 
can be very beneficial and confirming that the concept is worthy of closer scrutiny. 

1. Introduction 
Although the idea of extracting useful energy from ocean waves is not new (see 

Stahl 1892) it  is only in recent years that concerted efforts have been made to invent 
devices that will capture the energy both efficiently and cheaply. An up-to-date 
description of many of these devices is given by Shaw (1982) and Count, Fry & Haskell 
(1983). Concurrent with engineering development and experimentation, considerable 
progress has also been made on the theoretical hydrodynamics of these devices, and 
a fairly exhaustive list of references up to 1980 can be found in the review article 
by Evans (1981). 

Although the theoretical work has been almost exclusively restricted to linear 
classical water-wave theory, comparison with experiment has been generally satis- 
factory, as shown in the paper by Count & Jefferys (1980). As more sophisticated 
devices evolve, it becomes increasingly difficult to develop simple analytical results, 
and greater use of numerical methods is necessary. Nevertheless, such methods are 
costly in both time and money, particularly where detailed parametric studies are 
required. It is always desirable, therefore, to construct good, accurate, simple 
approximate solutions, wherever possible. 

Such a solution is presented here for a novel wave-energy device invented by a 
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Norwegian group (Ambli et al. 1982). Most wave-energy devices are resonant in the 
sense that their active elements are tuned to respond most at a particular wave 
frequency. This resonance can be achieved in different ways; for example in the Salter 
‘duck’ device resonance is achieved by balancing the inertia of the rocking ‘duck’ 
plus its hydrodynamic added inertia against the hydrostatic restoring forces as its 
immersed volume changes. Again, for a typical isolated oscillating water column 
(Moody & Elliott 1982) the dimensions are chosen so as to resonate a trapped mass 
of water with its own hydrostatic restoring force. 

It is the oscillating water column to which the Norwegian idea has been applied, 
but there is no reason why other types of devices could not be used. The idea is to 
build thin projecting sidewalls out from a device towards the incoming waves so as 
to create an additional resonance within the harbour so formed. The simplest analogy 
is the quarter-wavelength effect in acoustics, whereby large amplification of the 
motion inside a parallel-sided duct with one end closed is achieved by exciting the 
open end with a disturbance having a frequency corresponding to a wave four times 
the length of the duct. I n  the wave-energy case the incoming wave field is thereby 
considerably amplified before it reaches the active elements of the device, with a 
consequent potential increase in efficiency. 

The plan of the paper is as follows. I n  $2 the problem is formulated and a necessary 
summary of the theory of isolated wave-energy devices presented. A simple 
approximate technique is then used to derive modified expressions for all 
hydrodynamic quantities of interest, including the capture-width ratio, defined as the 
mean power captured per unit wavefront of the incoming waves, for a device 
modified by the inclusion of projecting sidewalls of arbitrary length. The approximate 
formulae derived are applied to a simple idealized device and the results compared 
with a full numerical procedure based on boundary integral methods. Agreement 
between the two methods is shown to be convincing even for short harbour walls, 
where the approximate theory can be expected to work least well. 

Finally an assessment is made of the effectiveness of adding sidewalls to this 
idealized wave-energy device, and it is shown that considerable improvement of 
performance can be achieved, provided that the length of the walls is chosen carefully. 

2. Formulation and approximate solution 
We fix attention on an idealized device consisting of a rectangular block which 

extends through the entire water depth as shown in figure 1.  The vertical side of the 
block facing the incoming waves is free to make small simple harmonic horizontal 
oscillations in response to a monochromatic incident wave. This motion is assumed 
to be resisted by some linear internal mechanism, such as a pump, so that work is 
done on the device. It is further assumed that the two vertical faces bounding the 
energy-absorbing face are extended outwards to meet the incoming waves by the 
addition of thin sidewalls so as to form a kind of ‘harbour ’, as shown in figure 1 .  

The aim of the paper is twofold. First to develop and validate a simple theoretical 
model enabling the performance of such a device to be predicted, and secondly to 
assess the effect on power absorption by the addition of the projecting sidewalls. 

2.1. Theory of isolated wave-energy devices 
The theory of an isolated rigid body absorbing energy by oscillations involving a single 
degree of freedom, in either two or three dimensions, has been developed in different 
ways by a number of authors. For a review see Evans (1981). 
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FIQURE 1.  The geometry of a harbour system. 

A description suited to  our purposes is to consider simple harmonic motions a t  
radian frequency w. With the time dependence exp ( - iwt) removed, the equation of 
motion of the device can be written as 

where 

X,+X = zu, 
X,= - A U  

is the force opposing the motion of the active front face, taken to be proportional 
to the (complex) velocity U of that face. The horizontal wave-exciting force on the 
front face is X and the complex impedance is 

Z =  B-iw(I+M--$) ,  

where I is the inertia (here just the mass) of the front face, M and B respectively 
are the frequency-dependent added-mass and radiation-damping coefficients, and G 
is a constant form corresponding to the linearized hydrostatic restoring force (here 

The mean power P absorbed is minus the mean rate of working of the applied force 
(7 = 0). 

X,, so that 

P =  -Re+XeU = +(A+2)IU12 (from (2.2)) 

= --{ 1 1x12 1 --} In - q z  (from (2.1)-(2.3)), 
8 B  IA+Zlz 

where a bar denotes the complex conjugate. Clearly 

although generally A is real and positive, in which case 

(2.4) 
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Equation (2.4) applies to any device, including the present idealized one, with any 
length of projecting sidewalls. I n  particular it holds when the sidewall length L is 
either zero or infinite. The latter case would correspond to the rectangular block 
spanning a narrow semi-infinite wave tank and operating like a piston wavemaker 
in the presence of an incident wavetrain. (It will be assumed throughout this paper 
that the incident wavelength is greater than twice the width of the front face, SO that, 
even in obliquely incident waves, only the fundamental, with crests perpendicular 
to the sidewalls, is incident upon the active front face.) The wavemaker comparison 
is useful, since i t  is easily seen, by considering the time-reversal of the forced motion 
of the wavemaker in the absence of an incident wave, that  it is always possible in 
theory to  absorb all the energy in an incoming wavetrain. I n  practice, of course, this 
will not be possible a t  all frequencies unless A is allowed to vary in order to satisfy 
A = Z. 

The conclusion of total absorption is confirmed by substitution in (2.5) of the 
relation 

JX12 = 8BPw (2.7) 

connecting the exciting force with the mean power Pw incident on the device. 
Equation (2.7) holds for cylindrical sections completely spanning the narrow wave 
tank making simple harmonic oscillations in regular waves of amplitude A ,  and can 
be deduced from more general results derived in Newman (1976). 

The performance of our idealized device for finitc-length sidewalls will be charac- 
terized by the capture-width ratio W defined as 

W = PIPw. (2.8) 

All that  is required is an estimate of the quantities 2 and X in (2.4) in order to 
determine W from (2.4) and (2.8) for any particular value of A over a range of 
different frequencies. The quantities I and C appearing in ( 2 . 3 )  are determined from 
the geometry of the device, while the frequency-dependent hydrodynamic coefficients 
M ,  B and X are less easy to determine and in general require a considerable amount 
of numerical work. 

t 

2.2. An approximate Method 

Before embarking on a full numerical procedure for determining M ,  B and X ,  we shall 
derive a simple approximate method which will turn out to have wide validity. To 
clarify the notation we shall use the superscript h to denote quantities associated with 
the ‘harbour ’ device comprising the rectangular block plus sidewalls of length L. 
Where the h is not displayed, the quantities refer to the case L = 00 corresponding 
to the device positioned a t  one end of a semi-infinite wave tank. 

I n  order to proceed further, it  is assumed that kL 9 1 ,  where the incident 
wavelength h satisfies k = 27c/h. Under this assumption we can regard the active front 
face of the device bounded by the sidewalls of length L as responding to an inJinite 
train of plane waves. Again the wavefield approaching the open end z = L from x < L, 
I y I < a can be regarded as a plane wave travelling down a semi-infinite waveguide 
bounded by two parallel rigid walls. It is known (see Noble 1958, p. 110) that such 
a wave is partly reflected back down the waveguide with a reflection coefficient R 
and partly radiated a t  the open end. For radiation into an infinite domain, or in this 
case the open sea, Noble shows that 

> (2.9) R = e-ka e2ik(L+Z) 
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(2.10) 

where y = 0.5772.. . is Euler’s constant. For radiation out into an infinite channel of 
width b 2 a ,  parallel to the waveguide, it can be shown using the Wiener-Hopf 
technique that 

(2.1 1 )  R = - (1 -p,) eZik(L+U 

where ,u = a/b,  ka < A ,  and in this case the ‘added length’ is given as 

-- W )  - A-1 {log p-1 + (1 - p )  p-1 log (1  - p)-’) 
a 

The simpler result JRI = 1 - p  follows from a simple application of Green’s theorem 
to the potential and to the functions exp (kikx),  which are also possible potentials 
in this case. This solution will be relevant to experimental work on ‘harbour ’ devices 
in wave tanks where the influence of the sidewalls cannot be ignored. 

Consider the exciting force X h  on theJixed front due to a plane wave of amplitude 
A travelling in a direction parallel to the sidewalls. The only effect of the (thin) 
sidewalls is to guide a slice of the incident wave towards the absorber, where it will 
be reflected as a plane wave of (complex) amplitude Ar, where r is the reflection 
coefficient for a fixed device. On reaching the open end it will be partly radiated out 
and partly reflected back towards the absorber as a wave of amplitude ArR. This 
process of  multiple reflection will continue indefinitely, with the net effect that a wave 
of amplitude A/( 1 - r R )  will be incident on the front face. It follows that 

X h  = X/(l -rR) .  (2.13) 

Next, consider the applied force Y t  necessary to maintain the front face at velocity 
U in the absence of the incident wave. We have 

whilst if L = co 
Y t  = ZhU, 

Ye = zu. 

(2.14) 

(2.15) 

Now the effect of a velocity of U on the front face, under the assumption kL 4 1,  
is initially to  produce a wave of amplitude UC+ travelling away from the device. (Here 
UC+ is the (complex) wave amplitude radiated down a semi-infinite channel ( L  = co) 
owing to oscillations with (complex) velocity U ) .  When this wave reaches the open 
end it will be partially reflected back down the wave guide, and after multiple 
reflections gives rise to an apparent incident wave of amplitude UC+R/( 1 - r R ) .  Thus 
the j inite-L case can be regarded as equivalent to the infinite-L case, provided that 
the applied force is augmented by a force that negates that produced by the apparent 
incident wave. 

It follows that 
XUC+R 

A(l  - rR)  ’ 

ZhU = zu- (2.16) 
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and 

- 4Pw c+ 
(Haskind) 

A 
X =  

(Newman). 
C+ 
C+ 

r = -  

(2.17) 

(2.18) 

As a result, using in addition the identity (2.7) and noting that B = +(Z+Z), (2.16) 
reduces to 

In  particular 

Substitution of (2.13) and (2.20) into (2.4) gives, 

(2.19) 

(2.20) 

(2.21) 

showing that the maximum capture-width ratio of a device with projecting sidewalls 
is just 

(2.22) 

This gives w“ max = (1 -e-Zka)-l (2.23) 

for a device in the open sea. Use of (2.21) in addition gives, after rearrangement, 

[ A  + 2 1 2 -  lA -a2 
w”= I ( A  + 2) - rR(d - Z)l ’ 

(2.24) 

an expression for the capture-width ratio entirely in terms of the impedance 2 for 
the effectively two-dimensional problem with L = 00, the complex reflection 
coefficients r ,  R, and the power take-off parameter A .  

The modification to Wh required for obliquely incident waves making an angle 6 
with the sidewalls is straightforward and only affects X” and not 2”. Thus the 
obliquely incident wave of amplitude A will be guided by the sidewalls towards the 
absorbing front face as a wave of amplitude A’ dependent on 6 before multiple 
reflections take place. Thus (2.13) needs to be modified by the term A ’ / A  on the 
right-hand side, whilst (2.21) and (2.24) require the multiplication factor IA’(6)/A12 
on the right-hand side. This factor has a particularly simple expression given in Noble 
(1958, equation (3.26)), so that, for example, from (2.22) with IRI = exp ( -ha ) ,  

W;,,(B) = e-ka(1-cos6) (ka sin 6)-l sin (ka sin 8) Wkax(0), (2.25) 

in an obvious notation. 
Curves of (2.23) and (2.25) showing the variation of Wk,, with ka for different 

angles of incidence are presented in figure 2. Also shown for comparison are curves 
of W,,, for an isolated absorbing device like a buoy which oscillates about a vertical 
axis of symmetry. For vertical (heave) oscillations W,,, = (2ka)-l, whilst for 
horizontal (sway or surge) oscillations W,,, = (Ica)-l cos2 6 .  Notice that 

Wka,(0)+ ( 2 k ~ ) - ~  as k n - t o ,  

as might be anticipated on physical grounds since the device appears to  the waves 
like an isolated pulsating source. 
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FIGURE 2. The maximum capture-width ratio for a harbour system for various angles of incidence 
in comparison with the result (2ka)-' for a heaving axisymmetric structure. 

3. A numerical solution 
The most direct way of solving for the hydrodynamic properties of the 'harbour' 

system comprising a rectangular block with oscillating front face, plus projecting 
sidewalls, would be simply to use a source-distribution method common in ship- 
hydrodynamics theory. In  this method wave sources are distributed over the entire 
rigid body and the known normal velocity of the body provides an integral equation 
for the unknown source density. It is usual to discretize this integral equation and 
solve the resulting system of algebraic equations. 

In  the present problem such an approach would not work, since a source 
distribution is totally inappropriate for modelling the different flows either side of 
the thin projecting walls shown in figure 1 .  If a modification of this method were to 
be used, a dipole distribution would be more appropriate physically. Instead we 
choose an alternative method, which involves solving for the flow inside the 'harbour ' 
and matching this with another solution valid outside, the two solutions being 
matched across the connecting region, the harbour mouth. This approach also has 
the advantage of allowing for the predominantly two-dimensional nature of the 
solution within the harbour and matching with a fully three-dimensional solution 
outside, instead of attempting to use a representation valid in both regions. 

3.1. The outer solution 

The outer region is defined, by reference to figure 1 ,  to be the fluid region exterior to 
the rectangular block, closed by the plane S,: x = L, 0 < z < h, JyJ < a. We define 
S,  = S ,  u S,, with S,  the fixed rigid boundary -d  < x < L ,  0 < z < h,  y = +-a, and 
x = - d ,  0 6 z <  h, IyI 4 a. Let &(r) (&(r) )  denote the time-independent radiation 
(scattering) potential in the outer region and let q50(r) denote a given incident-wave 
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potential. Further, let G(r,  r’) denote the three-dimensional finite-depth source 
potential given by, for example, Wehausen & Laitone (1960). An application of 
Green’s theorem in the usual manner gives the integral relation 

Here r lies on SB, and the point r = r‘ is excluded from the integration. This result 
assumes that the usual linearized equation of water-wave theory are satisfied by #R, 

and also that #R, like G, behaves like an outgoing wave at large distances. The 
scattering problem can also be treated in this fashion, since (3.1) is also valid with 
#R replaced by the difference potential 

#D = #s-#oj (3.2) 

which is also outgoing a t  large distances. Now for each problem 

W R , S  = {y) on 81, 
an on S,  

for some function V(y, z ) ,  and (3.1) reduces to an integral equation for #D, namely 

or, for ds, by using (3.2). 

by g5R and dropping the last term. 
The corresponding integral equation for g5R is obtained from (3.3) by replacing #D 

3.2. The inner solution 

We seek a harmonic function @ in the region 0 < x < L, (yI d a, 0 < z < h, satisfying 
the conditions 

(3.4) 

(3.5) 

(3.6) 

w2@+gz  a@ = 0 ( z  = 0, 0 < x < L ,  Iyl < a) ,  

a* 
aY 

a Z  

- = O  ( Y = + u ,  O < X < L ,  O < z < h ) ,  

- _  ” - 0  ( z =  +h, o < x  < L, 1y1 < a ) ,  

whilst on So:  x = 0, IyI < a, 0 < z < h we shall assume @ is normalized so that 

(3.7) 
1 (radiation problem), 

a+-u=io ax ( scattering problem). 
_-  

Now separation of variables shows that the general solution may be expressed in 
the form 

m o o  

@(x,y,z) = X X (Anme-anmx+Bnmea’mz)@rnm(y , z ) ,  (3.8) 
n-0 m-0 

where 
mnY 

a 
l,hnrn(y, 2) = Nn C O S , U , ~ ( ~ - Z )  COS--, 



Sidewall injuence on wave-energy devices 369 

with 

and 

U 
N;E2 = (2pn h + sin 2pn h)  __, 

4 ~ n  

Here po = -ik, and the p n ( n  2 I )  are the positive real roots of 

w2g-l +,u tjan,uh = 0, 

whilst k is the positive real root of 

w2q-l = k tanh kh. 

Since ka < nn, ano > 0,  whilst aoo = -ik. 
The set {$nm(y, z ) ) ,  n, m = 0, 1 ,  . . . , can be shown to be orthonormal over 0 < z ,< h, 

Conditions (3.4)-(3.6) are automatically satisfied by the choice of solution, whilst 
IYI < a- 

(3.7) is satisfied if 
o o c o  

X X anm(Bnm-Anm) $nm(?/> z )  = u. 
n-o m=o 

It follows that 

anm(Bnm-Anm) = u n m  E joh dz j:u ul++nm(y, 2) dy. (3.9) 

Now continuity of pressure across S, gives 

where +(y, z )  is the potential for either the scattering or radiation problem in the outer 
region. Equations (3.9) and (3.10) permit all constants to be determined in terms of 
known quantities or integrals of + over S,. 

On S, continuity of horizontal velocity gives 
0 0 0 0  

?(L,y,z) = X Z anm(BnmeanmL- A,me-anmL) $nm(yj 2) = V(Y, z ) ,  
ax n-o m=o 

and substitution of this into (3.3) gives an integral equation for q5R or $s over 
S ,  = S,  U S,, after using (3.2). 

The numerical solution of (3.3) proceeds as follows. The surface S ,  u S,  is 
partitioned into N plane-area facets, a typical one having centroid xi and area ASd, 
and the unknown potential is assumed to be constant over each facet. This reduces 
the integral equation to a system of algebraic equations for the values of #R, a t  the 
centroid of each facet. Care must be taken to avoid the condition 2kL = nn, with n 
an integer, since this corresponds to  resonance in the inner region. Further details 
of the numerical procedure can be found in Count (1983). 

Once q5R, are determined on S,, all constants are fully determined and (3.8) can 
be used to determine the force on So from which 2” and X” follow. 

4. Results 
I n  order to compare the values of 2” and Xh determined from the full numerical 

procedure just described, and the approximate expressions given by (2.19) and (2.13), 
i t  is necessary to determine 2 and X for the device in a semi-infinite channel. The 



370 

0.5 

0 -  

B. M .  Count and D. V .  Evans 

- - 3n 

I I I - 0  

1 .oo 

0.75 

p(ku) and U k a )  

0.50 

0.25 

0 

r- 

I + I’ 

0.5 1 .o 1.5 2.0 

Non-dimensional wavenumber ka 

scattering problem is extremely simple, since the solution is a standing wave of 
amplitude 2A corresponding to the complete reflection of the incident wave a t  the 
fixed front face. The solution to the radiation problem is just a special case of the 
Havelock’s (1929) wavemaker theory, and can be determined from (3.8) and (3.9) by 
putting m = 0, B,, = 0. Thus for this particular case the solution is given explicitly 
from (3.8) with A,, given by (3.9), and Z and X can be determined directly. With 
T = 1 for the simple idealized device considered here, and R given by (2.9) and (2.10), 
the expressions (2.13) and (2.19) can now be computed and compared with the 
expressions for X” and Zh obtained from the full numerical approach. 

It is convenient, by reference to figure 1, t,o non-dimensionalize in the following 
manner. The mass of the active front face of the block is taken to be I = Zadhp, which 

FIGURE 3. Comparison between the approximate theory (solid and dashed lines) 
and numerical calculations ( 
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p ( k a )  and 

4 

3 

U k a )  
2 

1 

0 
0.5 1 .o 1 .5  2.0 

Non-dimensional wavenumber ka 
FIGURE 4. Comparison between the approximate theory (solid and dashed lines) and 

numerical calculations ( , + ) for L/d = 1 .  

is the equivalent mass of water behind the front face. Then the frequency-dependent 
added-mass and damping coefficients M and B are non-dimensionalized by writing 

M” B” 
p = 7  Iw ’ 

whilst the exciting force Xh is written 

t = IXh1/2apghA, 

being non-dimensionalized using the increase in hydrostatic force on the front face 
due to an increase A in water elevation. This ensures that 6 = 1 at zero frequency. 
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FIQURE 5.  Comparison between the approximate theory (solid and dashed lines) and 
numerical calculations (0,  +)  for L/d  = 2. 

The variation of p, A, 6 and arg Xh with dimensionless wavenumber ka for different 
lengths of sidewalls characterized by L l d  are shown in figures 3-5 using both the full 
numerical results and the approximate theory. The dimensions d = 1.2 m, h = 1.3 m 
and a = 1 m correspond to typical model-sized devices for wave-tank testing 
purposes and provide values of the parameters h l d  and a l d  for use in the calculations. 

It is clear from figure 5 that for L l d  = 2 the approximate theory is in excellent 
agreement with the numerical results over the entire frequency range of interest. For 
L / d  = 1 the agreement is less good, as figure 4 shows, although the essential features 
of, for example, the added-mass coefficient p ( k a )  are preserved. It is interesting to 
note that the effect of increasing the length of the harbour walls is to produce a 
narrower, more peaked damping coefficient A(ka) as a function of frequency, while 
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FIGURE 6. Comparison of the angular dependence of the exciting-force amplitude using the 
approximate theory (solid lines) and numerical calculations (0,  +) for ka = 0.2864, 1.0466 and 
L/d = 0, 2. 

the added-mass coefficient p(ka)  displays more rapid variations and an increasing 
number of zeros as Lld increases. The case Lld = 0 corresponds to the absence of 
projecting sidewalls. The numerical solution in this case was determined using the 
matching technique described here, and also, as a check, a direct boundary-element 
source-distribution method was used since now there is no problem over the thin 
sidewalls. The results for this case are shown in figure 3, and it is of interest to compare 
them with the approximate method. Despite the fact that there are no sidewalls, the 
approximate method still yields results with Lld = 0, and in fact is still in fair 
agreement with the numerical results. 

In  addition, results for Xh have been calculated for obliquely incident waves. The 
analytic expression for the angular behaviour was given by (2.25),  where 
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FIGURE 7. The capture-width ratio for L/d  = 0, 1, 2 using an optimized (real) damping constant 
A compared with Wk,, for normally incident waves (0 = 0). 

in an obvious notation. I n  figure 6 IXh(ka, 6 )J /Xh(ka ,  0)l is shown in order to compare 
the simple expression given above with the numerically computed values for two 
values of the ka and Lld = 0, 2. I n  this case the correlation is not so impressive, 
although the general shapes of the curves are the same. 

The differences between the two methods can be explained by the influence of the 
wave scattering from the outside walls of the device. For the case 0 = 0 we would 
expect the scattered wave to have little influence, since the sidewalls are aligned with 
the propagation direction, whereas for 6 > 0 there will be increasingly important 
scattering from the side and rear walls of the device. Moreover, the finite nature of 
the system will be important in determining these scattering effects. For example, 
if 0 = x, the theory based on the assumption Lld 9 1 assumes that a plane incident 
wave is travelling along the sidewalls toward the harbour mouth, whereas for finite 
values of L/d the influence of the rear wall will not have decayed sufficiently for this 
assumption to be valid. 

Overall, the approximations given by (2.13) and (2.19) can be expected to  remain 
good over a much wider range than expected, particularly for 0 = 0. Therefore these 
formulae may be used with confidence for parametric studies on harbour systems with 
more realistic devices than the simple configuration used for this study. 

Having confirmed the applicability of the approximate formulae, it remains to 
assess the effect on performance of our device of adding sidewalls of varying length. 
To do this a choice of C =l 0 must be made in (2.3) so that the device has a natural 
resonance, as would be the case for a realistic device. We choose C = Bapgd = I g / h  
as being typical, and from (2.3) this provides a first resonant frequency a t  the lowest 
w satisfying 

w2h/g = (1 +,u)-'. (4.1) 
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The assumed linear power take-off will be characterized by the real positive 
constant A .  From (2.4) maximum efficiency is achieved when A = lZhl, and this value 
was chosen at each frequency computed. The limit (1  - e-2ka)-1 can only be achieved 
if A = Z”, which for real A requires ImZ” = 0 or (4.1) to be satisfied. 

We have, for A = lZhl, 

and this expression is sketched in figure 7 as a function of ka for different values of 
L l d .  Also shown is the upper limit on the capture-width ratio predicted by the 
approximate theory and given by (2.23). 

It is clear that  the addition of sidewalls produces a number of effects on the 
performance of the device. First, the peak performance is increased and also shifted 
to the lower end of the frequency range. Secondly, the curves for L l d  = 1,2 contain 
more than one peak that approach the upper limit of performance. Both of these 
effects can be explained in terms of the modifications to h and ,u as L / d  increases. 
Thus the rapid changes in ,u shown in figures 4 and 5 for L l d  = 1 , 2  produce extra 
solutions to  the equation (4.1) for the resonant frequencies. The peakiness of the curve 
of h ( k a )  near the first zero of ,u(ka) results in a similar narrowing in the performance 
curves near the maximum values. 

It is of interest to note that the curve for L / d  = 1 is close to  the upper limit of 
performance over a wide frequency range. This has been achieved using a simple linear 
resistive damping control plus harbour walls, thus avoiding the need for sophisticated 
control mechanisms involving complex values of A .  

5. Conclusion 
A theoretical model has been developed for the hydrodynamic performance of a 

wave-energy device equipped with projecting sidewalls. A simple approximate theory 
enabled predictions to be made of its hydrodynamical characteristics of added mass, 
damping and exciting force in terms of the characteristics of a simple two-dimensional 
mode. Good agreement was obtained between the approximate results and the results 
based on a full numerical treatment. The approximation technique may also be used 
to predict the efficiency of the device plus sidewalls when operating in the middle 
of a wave tank band of width b 2 a ,  which will be more akin to many experimental 
configurations. 

I n  this paper a simple device was chosen for analytical convenience. The performance 
results indicate that substantial changes occur on adding a harbour, and by design 
these can be extremely beneficial. There is no reason to believe that the same effect 
would not be detected for any other wave-energy device that operates well in a 
semi-infinite channel, including the oscillating water column device being considered 
a t  the National Engineering Laboratory (Moody & Elliot 1982). 

As a result, the analyses presented in this paper have confirmed the claims of Ambli 
et al. (1982) that the addition of projecting sidewalls will increase the energy capture 
of a wave-energy device. This opens up the possibility that with careful design it may 
be possible to substantially improve the economic potential of wave-energy systems, 
and it is to be hoped that this paper has demonstrated that this concept is exciting 
and merits futher investigation. 

This work is the result of a continuing liaison between the authors in the wave-energy 
field. Results for the numerical model are published by permission of the CEGB and 
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describe work undertaken a t  Marchwood Engineering Laboratories. Development of 
the approximate model forms part of a continuing research programme in the 
Department of Mathematics, University of Bristol, supported by the SERC Marine 
Technology Directorate under Grant GR/B/76720, and initially by NTNF, Norway, 
while D.V.E. was a visitor a t  the University of Trondheim in 1982. 
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